Coronary Endothelial Dysfunction in Humans Is Associated With Myocardial Perfusion Defects

David Hasdai, MD; Raymond J. Gibbons, MD; David R. Holmes, Jr, MD; Stuart T. Higano, MD; Amir Lerman, MD

From the Division of Internal Medicine and Cardiovascular Diseases, Mayo Clinic and Foundation, Rochester, Minn.

Correspondence to Amir Lerman, MD, Division of Cardiovascular Diseases, Mayo Clinic, 200 First St SW, Rochester, MN 55905.

Abstract

Background Coronary endothelial dysfunction may occur in patients with minimally...
obstructive coronary artery disease and angina, and potentially may cause myocardial ischemia.

Methods and Results Coronal endothelium-dependent vasodilation was examined in patients with angina and <50% coronary artery diameter (CAD) stenosis by selectively infusing acetylcholine (10^{-6} \text{ mol/L} \text{ to } 10^{-4} \text{ mol/L}) into the left anterior descending coronary artery (LAD). Percent change in CAD (\%\Delta\text{CAD}) was measured by quantitative coronary angiography, and percent change in coronary blood flow (\%\Delta\text{CBF}) was calculated using intracoronary flow Doppler. Coronary endothelium-independent vasodilation was examined using intracoronary adenosine and nitroglycerin. 99mTc sestamibi was injected intravenously just prior to the infusion of the highest dose of acetylcholine. Patients were divided blindly into three groups: Perfusion defects in non-LAD territory (group 1, n=6), no perfusion defects (group 2, n=7), and perfusion defects in the LAD territory (group 3, n=7). All patients had intact endothelium-independent vasodilation. In group 1, perfusion defects outside the LAD territory reflected an increase in \%\Delta\text{CAD} and \%\Delta\text{CBF} by 24\pm5\% and 241\pm46\% in the LAD. In group 2, \%\Delta\text{CAD} decreased by 26\pm5\%, but \%\Delta\text{CBF} increased by 54\pm17\%. In group 3, perfusion defects were within the LAD territory, reflecting a decrease in \%\Delta\text{CAD} and \%\Delta\text{CBF} by 35\pm5\% and 51\pm14\%, respectively.

Conclusions This study demonstrates that coronary endothelial dysfunction in humans may be temporally associated with myocardial perfusion defects and supports a role for the coronary epicardial and microcirculation endothelium in regulating myocardial perfusion. Myocardial ischemia may occur in humans with impaired endothelium-dependent coronary flow reserve of the coronary epicardial and microcirculation.

Key Words: coronary disease • angina • vasodilation • microcirculation • perfusion

Introduction

The coronary endothelium regulates coronary vascular tone by releasing endothelium-dependent vasoconstricting and vasodilating factors.1 Endothelium-derived relaxing factors, such as nitric oxide, prostacyclin, and endothelium-derived hyperpolarizing factor are elaborated by the intact endothelium and mediate the increase in CBF in response to increased myocardial demand associated with physical and mental stress.2 This response is reproduced by the administration of acetylcholine2,3,4 an endothelium-dependent vasodilator.5 Hence, the normal coronary vascular response to acetylcholine is an increase in CAD and CBF.5 Coronary endothelial dysfunction is characterized by an attenuated increase in CAD and CBF in response to acetylcholine.6,7,8,9,10,11,12 It is currently well-recognized that coronary endothelial dysfunction is detected in a proportion of patients with minimally obstructive coronary artery disease and angina.6,8,12,13,14,15

Myocardial ischemia may occur during coronary vasoconstriction associated with coronary endothelial dysfunction. Indeed, it has previously been shown that impaired endothelium-dependent coronary
vasodilation is associated with thallium scintigraphic defects suggestive of myocardial ischemia in response to exercise, although a temporal relation between the two findings was not established. The current study was designed to examine the hypothesis that coronary endothelial dysfunction may be temporally associated with myocardial perfusion defects suggestive of myocardial ischemia, and that the abnormal myocardial perfusion is associated with impaired vasodilation of the coronary microcirculation. Toward this aim we prospectively evaluated myocardial perfusion using 99mTc-sestamibi SPECT imaging during intracoronary acetylcholine infusion in patients with chest pain, minimally obstructive coronary artery disease, and risk factors for coronary atherosclerosis.

Methods

The following study protocol was approved by the Mayo Clinic Institutional Review Board. All patients gave written informed consent to participate in the study and were referred for coronary angiography due to recurrent chest pain. Exclusion criteria included ≥50% diameter stenosis of any coronary artery, prior myocardial infarction, unstable angina pectoris, uncontrolled hypertension, peripheral vascular disease, ejection fraction <55%, left ventricular hypertrophy, diabetes mellitus, and significant endocrine, hepatic, renal, or inflammatory disease. None of the patients had a left dominant system or a "wrap-around" LAD (ie, extending around the apex and subtending the inferior-posterior wall).

Drug Infusion

Patients were brought to the cardiac catheterization laboratory in the fasting state after all cardiovascular medications had been discontinued for at least 48 hours. None of the patients were receiving lipid-lowering drugs, antioxidants, angiotensin converting enzyme inhibitors, or oral nitrates. The few patients with hypertension were treated either with calcium-channel blockers or β-adrenergic blockers, but these were stopped at least 48 hours prior to the study. Diagnostic coronary angiography was performed via the percutaneous femoral approach without prior administration of nitrates or calcium blockers. The coronary angiogram was reviewed prior to the infusion of drugs; severity of stenosis was assessed by online quantitative coronary angiography. Patients with significantly obstructive coronary artery disease (≥50% diameter stenosis of any coronary artery) were excluded from further studies.

The determination of endothelium-dependent and endothelium-independent flow reserve was performed as previously described. In all patients, acetylcholine was selectively infused into the LAD; other drugs were administered through the guiding catheter positioned in the ostium of the left main coronary artery. A Doppler guidewire (FloWire, Cardiometrics Incorporated) diameter of 0.014 in within a 2.2F coronary-infusion catheter (Ultrafuse, SciMed Life System) were advanced and positioned into the midportion of the LAD. The Doppler guidewire was then positioned 2 to 3 mm distal to the tip of the infusion catheter. Baseline APV as measured by Doppler echography was recorded. Intracoronary bolus injections of 24 to 36 µg adenosine (Fujisawa), an endothelium-independent vasodilator primarily of the microcirculation, were administered into the guiding catheter, and the maximal APV was recorded. The endothelium-independent coronary flow reserve ratio was calculated by dividing the APV after adenosine injection by the baseline APV. To ensure that the increase in CBF did not merely reflect the forces of intracoronary bolus injection, coronary flow reserve in response to normal saline (3 to 4 mL)
was measured prior to adenosine injection.

After a 5-minute equilibration period, baseline APV was recorded, followed by coronary angiography using nonionic contrast medium (Omnipaque, Winthrop Laboratories). Acetylcholine (Iolab Pharmaceuticals) at concentrations of 10^{-6}, 10^{-5}, and 10^{-4} mol/L (to achieve estimated final blood concentrations in the coronary bed of 10^{-8}, 10^{-7}, and 10^{-6} mol/L) was infused for 3 minutes at each concentration. Doppler measurements and coronary angiography were obtained after each infusion. The infusion was terminated when the largest dose of acetylcholine (10^{-4} mol/L) was reached. Infusions were performed with a Harvard pump to maintain infusion rates at less than 1% of estimated CBF. Nitroglycerin (Abbott Laboratories) was then injected as an intracoronary bolus (200 µg) through the guiding catheter to evaluate endothelium-independent coronary vasoactive response of vessels >200 µm in diameter. When the maximal effect of nitroglycerin was attained, measurements were obtained, and adenosine was injected again to determine the endothelium-independent coronary flow reserve ratio under conditions of epicardial vasodilation.

At each time interval, APV was recorded, followed by coronary angiography. The angles, skew rotation, and table height were kept constant during the procedure. In addition, the distances between the image intensifier and the x-ray tube to the patient were kept constant. CAD was measured by an independent investigator, unaware of other data (ie, Doppler flow and sestamibi perfusion data), using a computer-based image analysis system, as previously described. The measurements were performed in the segment 5 mm distal to the tip of the Doppler wire. For each time interval, the diameter was measured in the same segment. CBF was calculated from the Doppler-derived time velocity integral and vessel diameter, as previously described:

$$\text{CBF} = \pi (\text{APV}/2)(\text{CAD}/2)^2$$

Following the intracoronary infusions, intravascular ultrasound of the LAD was performed with a Hewlett-Packard imaging system as described previously to confirm the absence of significant obstructive coronary artery disease. Continuous images were recorded throughout the LAD on a 0.5-in videotape for off-line analysis. A special effort was made to keep the ultrasound catheter parallel to the long axis of the vessel lumen. Five to six segments of the LAD were identified in the videotape recording of the ultrasound images by the digital counter, and the exact position of the ultrasound catheter in relation to the artery was recorded on cinefilm at each position. The location of the catheter seen on the cinefilm of each segment was used to correlate the identified ultrasound image with the angiographic segment.

An off-line computer-interactive analysis system was used to digitize the intracoronary ultrasound video images onto a 256x256-bit matrix. Standard calibration markers directly from the ultrasound images were used for calibration of absolute measurements. This method and histopathological correlation have been validated for interpretation of intravascular ultrasound images. All measurements were made in end diastole and measured at the media-adventitia interface. Measurements of CAD were averaged from two orthogonal planes. The segment was excluded if the two measurements of diameter differed by more than 20% to avoid measuring an ellipsoid image. All measurements were made by an observer with no knowledge of the Doppler or angiographic findings.
Sestamibi Imaging
Imaged acquisition, processing, and interpretation have been reported in detail previously. In brief, all patients received an intravenous injection of 20 to 30 mCi of 99mTc sestamibi just prior to the infusion of the highest dose of acetylcholine. Tomographic imaging was performed within 2 hours. Images were acquired using a rotating gamma camera with an all-purpose collimator. Processing and reconstruction were performed using standard back-projection algorithms and a Ramp-Hanning filter. Circumferential count profiles were generated for five representative short-axis slices of the left ventricle extending from apex to base. The images were interpreted by an investigator (R.J.G.) blinded to the results of acetylcholine infusion. The patients were divided into three groups on the basis of results of sestamibi imaging: group 1, perfusion defect outside of the LAD distribution; group 2, no perfusion defect; group 3, perfusion defect within the LAD distribution. Since sestamibi SPECT imaging provides a measure of relative perfusion, the presence of a perfusion defect outside of the LAD distribution would be consistent with an increase in flow in the LAD. In contrast, a perfusion defect within the LAD distribution would be consistent with a decrease in flow in the artery.

Data Analysis
The maximal effect of acetylcholine infusion is expressed as percent change (mean±SEM) in CAD (% ΔCAD) and in CBF (%ΔCBF) relative to baseline. Differences between groups were analyzed using one-way ANOVA. Differences in baseline angiographic and clinical characteristics were analyzed using one-way ANOVA and the Fisher exact test. A value of $P<.05$ was accepted as significant.

Results
The study population included 20 patients, 10 men and 10 women, ranging in age from 31 to 67 years. Of this group, 30% were smokers and 20% had hypertension. The mean plasma cholesterol level for the whole group was 204±15 mg/dL. There were no significant differences in baseline demographics and in risk factors for coronary artery disease between the three groups (Table 1). The maximal percent area stenosis of the LAD was similar for all groups. There were no significant differences in calculated area stenosis as assessed by quantitative coronary angiography and intravascular ultrasound. All patients had mild coronary atherosclerosis as assessed by quantitative coronary angiography, with a similar distribution among the three major epicardial arteries for the three groups (Table 2).

View this table: Table 1. Demographic and Clinical Characteristics of the Study Groups
[link to table]
[link to table]

View this table: Table 2. Mean Maximal Luminal Diameter Stenosis in the Three Major Epicardial Arteries
[link to table]
[link to table]
Intracoronary injection of normal saline increased the APV insignificantly in all patients. The endothelium-independent coronary flow reserve, as assessed by intracoronary injection of adenosine, was similar in all groups (3.2±0.5, 2.9±0.7, and 3.0±0.4 for groups 1 through 3, \(P=NS \)). Similar values were attained when adenosine was injected after nitroglycerin (3.4±0.4, 3.2±0.8, and 3.1±0.5 for groups 1 through 3, respectively, \(P=NS \)).

There were significant differences, however, in the maximal response to acetylcholine between the three groups (Figure 1). The effects of acetylcholine on CAD and CBF at the three doses are presented in Table 3. In response to selective infusion of acetylcholine in the LAD, mean \(\Delta \text{CAD} \) and \(\Delta \text{CBF} \) of the LAD increased by as much as 25±5% and 241±46%, respectively, in patients with filling defects in the non-LAD distribution (group 1). In patients without myocardial perfusion defects (group 2), \(\Delta \text{CAD} \) in the LAD decreased by as much as 26±5%, but \(\Delta \text{CBF} \) increased by 54±17%. In patients with perfusion defects in the LAD distribution (group 3), both \(\Delta \text{CAD} \) and \(\Delta \text{CBF} \) in the LAD decreased by 35±5% and 51±14%, respectively. The \(\Delta \text{CAD} \) in group 2 was significantly different from group 1 \((P<.05)\) but similar to group 3 (Figure 1). In addition, the \(\Delta \text{CBF} \) in group 2 was significantly different \((P<.05)\) from groups 1 and 3 (Figure 1), as was the difference between groups 1 and 3.

Figure 1. Maximal effect of acetylcholine infusion (10\(^{-4}\) mol/L) in the LAD expressed as mean percent change in CAD (\(\Delta \text{CAD} \)) and in CBF (\(\Delta \text{CBF} \)) relative to baseline. *\(P<.05 \) relative to \(\Delta \text{CAD} \) for group 2; †\(P<.05 \) relative to \(\Delta \text{CBF} \) for group 2.

There was no difference between the three groups in \(\Delta \text{CAD} \) and \(\Delta \text{CBF} \) in response to intracoronary nitroglycerin relative to baseline, indicating intact endothelium-independent coronary epicardial vasodilation.

To assess the incidence of perfusion defects during acetylcholine infusion among patients with coronary endothelial dysfunction, we used two criteria to define endothelial dysfunction. When defined as \(\Delta \text{CBF} \leq 0 \) in response to acetylcholine, 7 of 7 patients with endothelial dysfunction had perfusion defects in the LAD territory, as compared with 0 of 13 patients with \(\Delta \text{CBF} > 0 \). When defined as \(\Delta \text{CBF} \leq 50 \)
in response to acetylcholine, 7 of 11 patients with endothelial dysfunction had perfusion defects in the LAD territory, compared with 0 of 9 patients with %ΔCBF>50.

Discussion

The current study demonstrates that coronary endothelial dysfunction in humans resulting in a decrease in CBF in the LAD (group 3) was associated with myocardial perfusion defects within the territory of the LAD by 99mTc-sestamibi SPECT imaging. Coronary endothelial dysfunction with a reduction in CAD but an attenuated increase in CBF (group 2) was not associated with myocardial perfusion defects by 99mTc-sestamibi SPECT imaging. Normal endothelial function, characterized by an increase in CAD in response to acetylcholine infusion with a large increase in CBF (group 1), was associated with a perfusion defect outside the territory of the LAD by 99mTc-sestamibi SPECT imaging, consistent with an increase in CBF in the LAD relative to other territories. These findings indicate that coronary vasoconstriction associated with endothelial dysfunction leading to a decrease in CBF may mediate myocardial perfusion defects suggestive of myocardial ischemia in humans.

Gould et al previously showed that risk factor modification in patients with coronary artery disease improved myocardial perfusion. The significant improvement in myocardial perfusion assessed by positron emission tomography was associated with only mild changes in coronary artery stenosis. The current study supports these findings, underscoring the importance of the coronary microcirculation endothelial function in the regulation of myocardial perfusion. Our data show that the changes in CAD in response to acetylcholine do not accurately reflect changes in CBF. Acetylcholine may cause coronary epicardial and microvessel vasoconstriction in states of endothelial dysfunction.17 18 19 20 21 22 23 24 However, despite the coronary epicardial vasoconstriction in response to acetylcholine in coronary endothelial dysfunction, CBF may be preserved or even increased.8 10 12 13 14 15

In addition, although there is an interaction between endothelium-dependent and endothelium-independent mechanisms,34 our results underscore the possible dissociation between the two pathways at both the epicardial and microcirculation levels. All patients had an intact response to adenosine and nitroglycerin, reflecting preserved endothelium-independent pathways, yet the response to acetylcholine was abnormal in patients with endothelial dysfunction (groups 2 and 3). The results in patients with endothelial dysfunction and myocardial perfusion defects (group 3) demonstrate that myocardial perfusion defects may occur in the absence of impaired endothelium-independent mechanisms.

Patients with coronary endothelial dysfunction may have symptomatic or silent episodes of myocardial ischemia. Yeung and colleagues previously reported that the response of diseased human coronary arteries to mental stress was a reduction in CAD and CBF. The degree of constriction during mental stress correlated with the response to the infusion of acetylcholine. Similarly, Zeiher and colleagues showed that, in patients with minimally obstructive coronary artery disease and exercise-induced thallium perfusion defects, the rise in CBF in response to acetylcholine was blunted compared with patients with normal thallium imaging during exercise, underscoring the role of the endothelium in regulating the changes in CBF in response to increased myocardial demand. Moreover, impaired

http://circ.ahajournals.org/cgi/content/full/96/10/3390

3/22/2010
coronary endothelial function has been suggested as a cause of acute myocardial infarction in patients with minimally obstructive disease. These prior studies implicate impaired endothelial function as a possible cause of myocardial ischemia, although a causal relation between the response to acetylcholine infusion and myocardial ischemia was not established.

In a more recent report, transient perfusion defects were observed in a substantial proportion of patients with acetylcholine-induced coronary epicardial vasoconstriction injected with thallium during peak acetylcholine infusion. The current study extends the findings of these prior studies, by demonstrating for the first time that acetylcholine-induced reductions in CBF may be temporally associated with regional myocardial perfusion defects suggestive of myocardial ischemia. Acetylcholine-induced reductions in CAD did not predict myocardial perfusion defects; epicardial CAD reduction occurred in a proportion of patients with endothelial dysfunction who had preserved CBF and no perfusion defects (group 2), indicating that the coronary resistance vessel vasodilation was effective in maintaining CBF in these patients.

Di Marco et al, using intracoronary Doppler for the measurement of CBF, previously reported that CBF in response to acetylcholine infusion was reduced in only 35% of patients with coronary artery disease. However, CAD was reduced at the maximal concentration of acetylcholine in all but 3 of the patients. The authors concluded that there is a dissociation between the impairments of endothelium-dependent vasodilation of conductance and resistance vessels. Our findings support such a phenomenon. In patients with normal endothelial function (group 1), CAD increased by 25%, yet CBF increased by 241%, indicating that coronary vasodilation occurred at both the epicardial and the microcirculation levels. In patients with endothelial dysfunction but no perfusion defects (group 2), CAD decreased by 26%, yet CBF increased by 54%. These patients had epicardial endothelial dysfunction but retained the coronary microcirculation endothelium-dependent vasodilator capability. It is possible that the vasodilator response of the coronary microcirculation in these patients was not completely intact, and that even in the face of a 26% reduction in CAD, a more pronounced rise in CBF would have been attained had the microcirculation fully dilated. Myocardial perfusion defects consistent with myocardial ischemia were evident when both CAD and CBF were reduced (group 3). In these patients, the reduction in CBF (51%) was comparable to the reduction in CAD (35%). In contrast to patients in group 2, in whom a similar decrease in CAD had occurred but CBF had increased, CBF in patients in group 3 decreased, indicating that the microcirculation did not dilate. Thus, groups 1 through 3 may reflect intact, partially impaired, and impaired endothelium-dependent coronary microcirculation vasodilation, respectively.

Prior studies have demonstrated that coronary microvascular endothelial dysfunction may contribute to the reduced vasodilator reserve in patients with minimally obstructive coronary artery disease. Quyyumi and coworkers demonstrated that patients with minimally obstructive coronary artery disease and depressed vasodilation in response to atrial pacing had reduced endothelium-dependent dilation with acetylcholine, presumably due to impaired coronary microcirculation vasodilation. Egashira and colleagues reported that the vasodilator response of the coronary microcirculation is blunted in patients with minimally obstructive coronary artery disease and angina. In this study, we have shown that myocardial perfusion defects may occur in patients whose coronary microcirculation endothelium-dependent reserve is altered.
In the present study we did not prove that the perfusion defects associated with a reduction in CBF resulted in myocardial ischemia. Moreover, we did not prove that these defects occur spontaneously or during physiological stress in patients with endothelial dysfunction, explaining their symptoms. Nevertheless, given that an impaired response to acetylcholine is associated with thallium scintigraphic defects suggestive of myocardial ischemia in response to exercise, these findings lend credence to the hypothesis that coronary vasoconstriction may occur in patients with coronary endothelial dysfunction, resulting in impaired blood flow and myocardial ischemia. To further support this hypothesis, additional studies during physiological stress should be done. Even those studies may not be conclusive, since the presence of perfusion defects during physiological stress does not necessarily imply that the underlying mechanism is endothelial dysfunction.

Patients with minimally obstructive coronary artery disease and chest pain present a difficult diagnostic and therapeutic challenge. In our study, we demonstrate that coronary endothelial dysfunction may exist without myocardial perfusion defects, due to coronary microvessel dilation. Assuming that the endothelium-dependent response to acetylcholine reflects the response to stress, the cause of symptoms in such patients is unclear, as CBF is not reduced. It is possible that nociceptive mediators are released during the coronary epicardial vasoconstriction. Indeed, endothelium-dependent vasodilators such as bradykinin are known to be cardiac algogenic substances. Coronary endothelial dysfunction is characterized by reduced nitric oxide activity, and hence these patients may have a lower pain threshold.

There are several limitations worth considering in interpreting our data. Our data were derived from a relatively small sample of highly selected patients referred to a tertiary-care center for the investigation of persistent chest pain. The proportion of patients with a decrease in CBF in response to acetylcholine may be different among patients being investigated for the cause of their chest pain in other settings. In addition, the blood flow velocities may be subject to some variability.

The treatment of coronary endothelial dysfunction is still investigational. Di Marco et al have suggested that different mechanisms underlie the endothelial dysfunction of conductance and resistance coronary vessels. Moreover, the vasoactive properties of epicardial and microcoronary vessels may be substantially different. The results of the present study indicate that the severity of the clinical manifestations of coronary endothelial dysfunction may be determined by the degree of involvement of the coronary microcirculation. Hence, the treatment of coronary endothelial dysfunction should also target the coronary microcirculation.

Selected Abbreviations and Acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>APV</td>
<td>average peak velocity</td>
</tr>
<tr>
<td>CAD</td>
<td>coronary artery diameter</td>
</tr>
<tr>
<td>CBF</td>
<td>coronary blood flow</td>
</tr>
<tr>
<td>LAD</td>
<td>left anterior descending coronary artery</td>
</tr>
<tr>
<td>SPECT</td>
<td>single-photon emission computed tomography</td>
</tr>
</tbody>
</table>
Acknowledgments

This study was supported by grants from the National Institutes of Health (HL-03180-01), the Miami Heart Research Institute, and the Mayo Foundation.

Received May 19, 1997; accepted July 1, 1997.

References

This article has been cited by other articles:

European Heart Journal

Assessment of endothelial function by non-invasive peripheral arterial tonometry predicts late cardiovascular adverse events

[Abstract] [Full Text] [PDF]

The Journal of Nuclear Medicine

Endothelial Dysfunction in Diabetic Patients with Abnormal Myocardial Perfusion in the Absence of Epicardial Obstructive Coronary Artery Disease

[Abstract] [Full Text] [PDF]

European Heart Journal

Coronary microcirculatory vasodilator function in relation to risk factors among patients without obstructive coronary disease and low to intermediate Framingham score

[Abstract] [Full Text] [PDF]

heart

S Lavi, J-H Bae, C S Rihal, A Prasad, G W Barsness, R J Lennon, D R Holmes Jr, and A Lerman

Segmental coronary endothelial dysfunction in patients with minimal atherosclerosis is associated with necrotic core plaques

Heart, September 15, 2009; 95(18): 1525 - 1530.

[Abstract] [Full Text] [PDF]
R. O. Cannon III

Microvascular angina and the continuing dilemma of chest pain with normal coronary angiograms.

[Abstract] [Full Text] [PDF]

Sirolimus as primary immunosuppression is associated with improved coronary vasomotor function compared with calcineurin inhibitors in stable cardiac transplant recipients

[Abstract] [Full Text] [PDF]

A. Cassar, P. Chareonthaitawee, C. S. Rihal, A. Prasad, R. J. Lennon, L. O. Lerman, and A. Lerman

Lack of Correlation Between Noninvasive Stress Tests and Invasive Coronary Vasomotor Dysfunction in Patients With Nonobstructive Coronary Artery Disease

Circ Cardiovasc Interv, June 1, 2009; 2(3): 237 - 244.

[Abstract] [Full Text] [PDF]

M. Gossl, U. I. Modder, E. J. Atkinson, A. Lerman, and S. Khosla

Osteocalcin Expression by Circulating Endothelial Progenitor Cells in Patients With Coronary Atherosclerosis

[Abstract] [Full Text] [PDF]

Brachial Artery Flow-Mediated Vasodilation in Patients With Cardiac Syndrome X

Angiology, October 1, 2008; 59(5): 581 - 586.

[Abstract] [PDF]

S. H. Han, J. H. Bae, D. R. Holmes Jr, R. J. Lennon, E. Eeckhout, G. W. Barsness, C. S. Rihal, and A. Lerman

Sex differences in atheroma burden and endothelial function in patients with early coronary atherosclerosis

[Abstract] [Full Text] [PDF]
Mayo Clinic Proceedings

Association Between the Paraoxonase-1 192Q>R Allelic Variant and Coronary Endothelial Dysfunction in Patients With Early Coronary Artery Disease
[Abstract] [Full Text] [PDF]

Hypertension

S. Lavi, E. H. Yang, A. Prasad, V. Mathew, G. W. Barsness, C. S. Rihal, L. O. Lerman, and A. Lerman
The Interaction Between Coronary Endothelial Dysfunction, Local Oxidative Stress, and Endogenous Nitric Oxide in Humans
Hypertension, January 1, 2008; 51(1): 127 - 133.
[Abstract] [Full Text] [PDF]

Circulation

Local Production of Lipoprotein-Associated Phospholipase A2 and Lysophosphatidylcholine in the Coronary Circulation: Association With Early Coronary Atherosclerosis and Endothelial Dysfunction in Humans
[Abstract] [Full Text] [PDF]

Circulation

Smoking Is Associated With Epicardial Coronary Endothelial Dysfunction and Elevated White Blood Cell Count in Patients With Chest Pain and Early Coronary Artery Disease
[Abstract] [Full Text] [PDF]

Circulation Research

M. Rahmani, R. P. Cruz, D. J. Granville, and B. M. McManus
Allograft Vasculopathy Versus Atherosclerosis
[Abstract] [Full Text] [PDF]

Circulation

Physiological Assessment of Coronary Artery Disease in the Cardiac Catheterization Laboratory: A Scientific Statement From the American Heart Association Committee on Diagnostic and Interventional Cardiac Catheterization, Council on Clinical
Cardiology
Circulation, September 19, 2006; 114(12): 1321 - 1341.
[Abstract] [Full Text] [PDF]

Journal of the American College of Cardiology
Coronary Artery Calcification and Myocardial Perfusion in Asymptomatic Adults: The MESA (Multi-Ethnic Study of Atherosclerosis)
[Abstract] [Full Text] [PDF]

Journal of Cardiovascular Pharmacology and Therapeutics
F. Bitar, A. Lerman, M. W. Akhter, P. Hatamizadeh, M. Janmohamed, S. Khan, and U. Elkayam
Variable response of conductance and resistance coronary arteries to endothelial stimulation in patients with heart failure due to nonischemic dilated cardiomyopathy.
[Abstract] [PDF]

European Heart Journal
Coronary endothelial dysfunction is associated with erectile dysfunction and elevated asymmetric dimethylarginine in patients with early atherosclerosis
[Abstract] [Full Text] [PDF]

Am. J. Physiol: Heart and Circulatory Physiology
Functional and structural remodeling of the myocardial microvasculature in early experimental hypertension
[Abstract] [Full Text] [PDF]

Journal of the American College of Cardiology
R. Scognamiglio, C. Negut, A. Ramondo, A. Tiengo, and A. Avogaro
Detection of Coronary Artery Disease in Asymptomatic Patients With Type 2 Diabetes Mellitus
[Abstract] [Full Text] [PDF]

Arteriosclerosis, Thrombosis, and Vascular Biology
Lipoprotein-Associated Phospholipase A2 Is an Independent Marker for Coronary Endothelial Dysfunction in Humans
[Abstract] [Full Text] [PDF]

R. Scognamiglio, C. Negut, A. Ramondo, A. Tiengo, and A. Avogaro
Detection of Coronary Artery Disease in Asymptomatic Patients With Type 2 Diabetes Mellitus
[Abstract] [Full Text] [PDF]

K. Senen, M. Ileri, A. Alper, F. Yetkin, R. Atak, I. Hisar, E. Yetkin, H. Turhan, H. Bardakci, and D. Demirkan
Increased Levels of Soluble Adhesion Molecules E-Selectin and P-Selectin in Patients with Cardiac Syndrome X
[Abstract] [PDF]

A. Lerman and A. M. Zeiher
Endothelial Function: Cardiac Events
[Full Text] [PDF]

J. Herrmann, S. T. Higano, R. J. Lenon, C. S. Rihal, and A. Lerman
Myocardial bridging is associated with alteration in coronary vasoreactivity
[Abstract] [Full Text] [PDF]

S. C. Halligan, B. Murtagh, R. J. Lennon, G. M. Pumper, V. Mathew, S. T. Higano, and A. Lerman
Effect of Long-term Hormone Replacement Therapy on Coronary Endothelial Function in Postmenopausal Women
[Abstract] [PDF]

E. L. Schiffrin and R. M. Touyz
From bedside to bench to bedside: role of renin-angiotensin-aldosterone system in remodeling of resistance arteries in hypertension
A. Sultan, C. Piot, D. Mariano-Goulart, M. Rasamisoa, E. Renard, and A. Avignon

Risk Factors for Silent Myocardial Ischemia in High-Risk Type 1 Diabetic Patients

Diabetes Care, July 1, 2004; 27(7): 1745 - 1747.

F. M. Maggi, S. Raselli, L. Grigore, L. Redaelli, S. Fantappie, and A. L. Catapano

Lipoprotein Remnants and Endothelial Dysfunction in the Postprandial Phase

P. O. Bonetti, S. N. Gadasalli, A. Lerman, and G. W. Barsness

Successful Treatment of Symptomatic Coronary Endothelial Dysfunction With Enhanced External Counterpulsation

Abnormal Coronary Vasomotion as a Prognostic Indicator of Cardiovascular Events in Women: Results From the National Heart, Lung, and Blood Institute-Sponsored Women’s Ischemia Syndrome Evaluation (WISE)

R. F. Redberg, R. O. Cannon III, N. Bairey Merz, A. Lerman, S. E. Reis, D. S. Sheps, and Endorsed by the American College of Cardiology Fou

Women's Ischemic Syndrome Evaluation: Current Status and Future Research Directions: Report of the National Heart, Lung and Blood Institute Workshop: October 2-4, 2002: Section 2: Stable Ischemia: Pathophysiology and Gender Differences

http://circ.ahajournals.org/cgi/content/full/96/10/3390

3/22/2010
P. Ganz and J. A. Vita

Testing Endothelial Vasomotor Function: Nitric Oxide, a Multipotent Molecule

[R. S. Blumenthal and T. J. Gluckman](http://circ.aha.org/cgi/content/full/96/10/3390)

New insights into the relationship between myocardial perfusion and lipid-lowering

[T. H. Schindler, E Nitzsche, N Magosaki, I Brink, M Mix, M Olschewski, U Solzbach, and H Just](http://circ.aha.org/cgi/content/full/96/10/3390)

Regional myocardial perfusion defects during exercise, as assessed by three dimensional integration of morphology and function, in relation to abnormal endothelium dependent vasoreactivity of the coronary microcirculation

Heart, May 1, 2003; 89(5): 517 - 526.

[M. Weis and J. P. Cooke](http://circ.aha.org/cgi/content/full/96/10/3390)

Cardiac Allograft Vasculopathy and Dysregulation of the NO Synthase Pathway

[T. H. Schindler, B. Hornig, P. T. Buser, M. Olschewski, N. Magosaki, M. Olschewski, and H. Just](http://circ.aha.org/cgi/content/full/96/10/3390)

Regional myocardial perfusion defects during exercise, as assessed by three dimensional integration of morphology and function, in relation to abnormal endothelium dependent vasoreactivity of the coronary microcirculation

Heart, May 1, 2003; 89(5): 517 - 526.

[M. Rodriguez-Porcel, A. Lerman, J. Herrmann, R. S. Schwartz, T. Sawamura, M. Condorelli, C. Napoli, and L. O. Lerman](http://circ.aha.org/cgi/content/full/96/10/3390)

Hypertension exacerbates the effect of hypercholesterolemia on the myocardial microvasculature

Pfisterer, E. U. Nitzsche, U. Solzbach, and H. Just

Prognostic Value of Abnormal Vasoreactivity of Epicardial Coronary Arteries to Sympathetic Stimulation in Patients With Normal Coronary Angiograms
[Abstract] [Full Text] [PDF]

Detecting Occult Coronary Disease in a High-Risk Asymptomatic Population
[Abstract] [Full Text] [PDF]

P. O. Bonetti, L. O. Lerman, and A. Lerman

Endothelial Dysfunction: A Marker of Atherosclerotic Risk
Arterioscler Thromb Vasc Biol, February 1, 2003; 23(2): 168 - 175.
[Abstract] [Full Text] [PDF]

A. Palinkas, E. Toth, R. Amyot, F. Rigo, L. Venneri, and E. Picano

The value of ECG and echocardiography during stress testing for identifying systemic endothelial dysfunction and epicardial artery stenosis
[Abstract] [Full Text] [PDF]

Effects of Folate Treatment and Homocysteine Lowering on Resistance Vessel Reactivity in Atherosclerotic Subjects
[Abstract] [Full Text] [PDF]

Coronary endothelial function in hyperhomocysteinemia: improvement after treatment with folic acid and cobalamin in patients with coronary artery disease
[Abstract] [Full Text] [PDF]

P. O. Bonetti, S. H. Wilson, M. Rodriguez-Porcel, D. R. Holmes Jr, L. O.
Lerman, and A. Lerman
Simvastatin preserves myocardial perfusion and coronary microvascular permeability in experimental hypercholesterolemia independent of lipid lowering
[Abstract] [Full Text] [PDF]

M.C. Verhaar, E. Stroes, and T.J. Rabelink
Folates and Cardiovascular Disease
[Abstract] [Full Text] [PDF]

Noninvasive measurement of concurrent single-kidney perfusion, glomerular filtration, and tubular function
[Abstract] [Full Text] [PDF]

D. Fagret, C. Ghezzi, and G. Vanzetto
99mTc-N-NOET Imaging for Myocardial Perfusion: Can It Offer More Than We Already Have?
[Full Text] [PDF]

L. O. Lerman and M. Rodriguez-Porcel
Functional Assessment of the Circulation of the Single Kidney
Hypertension, September 1, 2001; 38(3): 625 - 629.
[Abstract] [Full Text] [PDF]

Prognostic Significance of Endothelial Dysfunction in Hypertensive Patients
[Abstract] [Full Text] [PDF]

A. Nitenberg, S. Ledoux, P. Valensi, R. Sachs, J.-R. Attali, and I. Antony
Impairment of Coronary Microvascular Dilation in Response to Cold Pressor-Induced Sympathetic Stimulation in Type 2 Diabetic Patients With Abnormal Stress Thallium Imaging
Diabetes, May 1, 2001; 50(5): 1180 - 1185.

http://circ.ahajournals.org/cgi/content/full/96/10/3390
3/22/2010
M. Rodriguez-Porcel, A. Lerman, P. J. M. Best, J. D. Krier, C. Napoli, and L. O. Lerman

Hypercholesterolemia impairs myocardial perfusion and permeability: role of oxidative stress and endogenous scavenging activity

[Abstract] [Full Text] [PDF]

Simvastatin Preserves Coronary Endothelial Function in Hypercholesterolemia in the Absence of Lipid Lowering

[Abstract] [Full Text] [PDF]

E. Verna, L. Ceriani, L. Giovanella, G. Binaghi, and S. Garancini

"False-Positive" Myocardial Perfusion Scintigraphy Findings in Patients with Angiographically Normal Coronary Arteries: Insights from Intravascular Sonography Studies

[Abstract] [Full Text] [PDF]

M. Rodriguez-Porcel, A. Lerman, E. L. Ritman, S. H. Wilson, P. J. M. Best, and L. O. Lerman

Altered Myocardial Microvascular 3D Architecture in Experimental Hypercholesterolemia

[Abstract] [Full Text] [PDF]

Lipoprotein Lipase Activity Is Associated With Severity of Angina Pectoris

[Abstract] [Full Text] [PDF]

S. Hamasaki, J. Al Suwaidi, S. T. Higano, K. Miyauchi, D. R. Holmes Jr., and A. Lerman

Attenuated coronary flow reserve and vascular remodeling in patients with hypertension and left ventricular hypertrophy

http://circ.ahajournals.org/cgi/content/full/96/10/3390 3/22/2010
E. L. Schiffrin, J. B. Park, H. D. Intengan, and R. M. Touyz
Correction of Arterial Structure and Endothelial Dysfunction in Human Essential Hypertension by the Angiotensin Receptor Antagonist Losartan
[Abstract] [Full Text] [PDF]

Abnormal Myocardial Phosphorus-31 Nuclear Magnetic Resonance Spectroscopy in Women with Chest Pain but Normal Coronary Angiograms
[Abstract] [Full Text] [PDF]

J. A. Suwaidi, S. Hamasaki, S. T. Higano, R. A. Nishimura, D. R. Holmes Jr, and A. Lerman
Long-Term Follow-Up of Patients With Mild Coronary Artery Disease and Endothelial Dysfunction
Circulation, March 7, 2000; 101(9): 948 - 954.
[Abstract] [Full Text] [PDF]

S. Hamasaki, S. T. Higano, J. A. Suwaidi, R. A. Nishimura, K. Miyauchi, D. R. Holmes Jr, and A. Lerman
Cholesterol-Lowering Treatment Is Associated With Improvement in Coronary Vascular Remodeling and Endothelial Function in Patients With Normal or Mildly Diseased Coronary Arteries
[Abstract] [Full Text] [PDF]

E G Zouridakis, I D Cox, X Garcia-Moll, S Brown, P Nihoyannopoulos, and J C Kaski
Negative stress echocardiographic responses in normotensive and hypertensive patients with angina pectoris, positive exercise stress testing, and normal coronary arteriograms
Heart, February 1, 2000; 83(2): 141 - 146.
[Abstract] [Full Text]

A. F. M. van den Heuvel, D. J. van Veldhuisen, E. E. van der Wall, P. K.

Regional myocardial blood flow reserve impairment and metabolic changes suggesting myocardial ischemia in patients with idiopathic dilated cardiomyopathy

[Abstract] [Full Text] [PDF]

J. A. Suwaidi, J. L. Velianou, M. A. Gertz, R. O. Cannon III, S. T. Higano, D. R. Holmes Jr., and A. Lerman

Systemic Amyloidosis Presenting with Angina Pectoris

[Abstract] [Full Text] [PDF]

Differential anti-ischaemic effects of muscarinic receptor blockade in patients with obstructive coronary artery disease. Impaired vs normal left ventricular function

[Abstract] [PDF]

The Relationship Between Polymorphisms in the Endothelial Cell Nitric Oxide Synthase Gene and the Platelet GPIIIa Gene With Myocardial Infarction and Venous Thromboembolism in African Americans

[Abstract] [Full Text] [PDF]

A. Feldstein, J. D. Krier, M. H. Sarafov, A. Lerman, P. J. M. Best, S. H. Wilson, and L. O. Lerman

In Vivo Renal Vascular and Tubular Function in Experimental Hypercholesterolemia

Hypertension, October 1, 1999; 34(4): 859 - 864.

[Abstract] [Full Text] [PDF]

I. D. Cox, H. E. Botker, J. P. Bagger, H. S. Sonne, B. O Kristensen, and J. C. Kaski

Elevated endothelin concentrations are associated with reduced coronary vasomotor responses in patients with chest pain and normal coronary arteriograms

[Abstract] [Full Text] [PDF]